

NavEx: Providing Navigation Support for

Adaptive Browsing of Annotated Code

Examples

Michael YUDELSON, Peter BRUSILOVSKY

School of Information Sciences, University of Pittsburgh

135 N. Bellefield Ave., Pittsburgh, PA 15260 USA

{peterb, mvy3}@pitt.edu

Abstract. This paper presents NavEx, an adaptive environment for accessing

interactive programming examples. NavEx implements a specific kind of adaptive

navigation support known as adaptive annotation. The classroom study of NavEx

confirmed that adaptive navigation support can visibly increase student motivation

to work with non-mandatory educational content. NavEx boosted the overall amount

of work and the average length of a session. In addition, various features of NavEx

were highly regarded by the students.

Keywords: adaptive environments (web-based and other), motivation and

engagement in learning, web-based learning platforms.

1. Introduction

Program examples in the form of small but complete programs play an important role in

teaching programming. Program examples help students to understand syntax, semantics

and the pragmatics of programming languages, and provide useful problem-solving cases.

Experienced teachers of programming-related courses prepare several program examples

for every lecture and spend a reasonable fraction of lecture time analyzing these examples.

To let the students further explore the examples and use them as models for solving

assigned problems, teachers often include the code of the examples in their handouts and

even make the code accessible online. Unfortunately, these study tools are not a substitute

for an interactive example presentation during the lecture. While the code of the example is

still there, the explanations are not. For the students who failed to understand the example

in class or who missed the class, the power of the example is lost.

Our system WebEx (Web Examples) developed in 2001 [1] attempted to enhance

the value of online program examples by providing explained examples. The authoring

component of WebEx allowed a teacher to prepare an explained example by adding a

written comment for every line of it. The delivery component (see right frame on Figure 1)

allowed a student to explore explained examples interactively. Lines with available

comments were indicated by green bullets. A click on a bullet opened a comment for the

line. This design preserved the structure of an example while allowing the students to

selectively open comments for the lines that were not understood. Over the last 4 years we

have developed a large set of explained examples for WebEx, used it for several semesters

in two different programming-related courses, and run several classroom studies.

In the course of classroom studies of WebEx, the system proved itself as an

important course tool. Students rated the system highly, with its ability to support

interactive exploration of examples. Many students actively used the system through the

course, exploring many examples from different lectures. Yet, a sizeable fraction of

students used the system on only a few occasions. Knowing this pattern from our past work

on adaptive hypermedia [2], we hypothesized that the students might need some kind of

adaptive navigation support that would suggest the most relevant example to explore at any

given time. Indeed, with dozens of interactive examples available at the same time, it’s not

easy to select one to explore. Moreover, WebEx examples were scattered over the course

portal with several examples assigned to every lecture. While this organization supported

example exploration after a lecture, the abundance of examples made the search for the

right example harder.

The experience of ELM-ART [3] demonstrated that the proper adaptive navigation

support can significantly increase the amount of student work with a non-mandatory

educational content. To gain additional evidence in favor of adaptive navigation support in

our context, we solicited student feedback about the need of adaptation in the Spring 2003

study of WebEx. One of the questions in our WebEx questionnaire explained possible

adaptive navigation support functionality and asked the students whether this functionality

is useful. Almost 70% of respondents (out of 28) rated adaptive navigation support as at

least a useful feature (almost 30% rated it as very useful).

This data encouraged us to enhance the original WebEx system with adaptive

navigation support. The work on NavEx, an adaptive version of WebEx started in the Fall

of 2003 and an early prototype [4] was pilot-tested in Spring 2004. This paper describes the

final version of NavEx, which was completed and evaluated in a classroom study in the Fall

2004 semester. The following sections present the interface of NavEx, explain how its

adaptive functionality is implemented, and report the results of our classroom study. In

brief, the study confirmed positive student attitude toward our adaptive navigation support

and demonstrated that one of our specific adaptive navigation support approaches caused

impressive growth in system usage.

2. NavEx: The Interface

The goal of our NavEx system (Navigation to Examples) is to provide adaptive navigation

support in order to access a relatively large set (over 60) of interactive programming

examples. Capitalizing on our positive experience with ISIS-Tutor [5], ELM-ART [3] and

InterBook [2] we decided to apply a specific kind of adaptive navigation support known as

adaptive annotation. With adaptive annotation, a system provides adaptive visual cues for

every link to educational content. These visual cues (for example, a special icon or a special

anchor font color) provide additional information about the content behind the links helping

a student to choose most relevant proper link to follow. One important kind of adaptive

annotation pioneered in ISIS-Tutor is zone-based annotation, which divides all educational

content into three “zones”: 1) sufficiently known, 2) new and ready for exploration, and 3)

new, but not-yet-ready. This kind of annotation was later applied in ELM-ART, InterBook,

AHA! [6], KBS-HyperBook [7], and many other systems. Another kind of adaptive

annotation pioneered in InterBook [3] is progress-based annotation, which shows current

progress achieved while working with an educational object. This kind of annotation is

currently less popular and is only used in a few systems such as INSPIRE [8].

While the prototype version of NavEx [4] used only zone-based annotation, the

current version attempts to combine zone-based and performance-based annotation in a

single adaptive icon. The goal of adaptive annotation in NavEx is to provide three types of

information to students:

• Categorize examples as being either: ones the student is ready for or not yet

ready to explore;

• Delineate is the student’s progress within the examples (showing number of

explored annotated code lines);

• Emphasize the most relevant examples for the student given her past interaction

with NavEx or WebEx (all of interaction with WebEx is taken into

consideration by NavEx).

The NavEx interface is shown on Figure 1. The left side displays a list of annotated

links to all the code examples available for a student in the current course. The right side

displays the name of the current example, the menu buttons (such as ‘reload’, ‘hide left

frame’, and ‘help'), and the annotated code example.

Figure 1. NavEx interface

Not ready to be browsed

Ready to be browsed

Figure 2. Annotation of the examples

Students click on links in the left frame to select an example and browse annotated

code, by clicking again on colored bullets, in order to obtain teacher’s comments. Each link

to an example in the left frame is supplied with an icon that conveys information about (1)

‘readiness’ of the student to browse the example, and (2) the student’s progress within the

example. If the student is ‘not ready’ to browse the example then a red X bullet is displayed

(Figure 2). If the student is ‘ready’ to browse the example then a green round bullet is

shown. Depending on the student’s progress, the green bullet will be empty, partially or

wholly filled. There are 5 discrete progress measures from 0% to 100%, with 25%

increments (Figure 2). An empty green bullet denotes examples that are available, yet not

browsed by the student. The relevance of the example is marked by the font style. If the

example is relevant its link is displayed in bold font, otherwise it is in regular font (Figure

1). The fact that the example is ‘not ready’ or ‘not recommended’ doesn’t prevent the user

from actually browsing it. All of the annotated examples are available for exploration and it

is up to a student as to whether to follow the suggestions expressed by annotations or not.

3. NavEx: The Implementation and the Internal Mechanisms

The annotation of examples is compiled, based on the domain model concepts. Each of the

examples is indexed with such concepts before it is added to the system. The indexing goes

through two stages. First, concepts are extracted from each of the examples by a fully-

automatic operation-level parser. Second, for each of the examples, the set of concepts is

split into prerequisite concepts and outcome concepts. The splitting algorithm, besides

example-concept pairs, requires examples to be grouped by lecture. Indexing algorithms are

discussed in more detail in [9]. Supplying each example with two sets of concept -

prerequisites and outcomes – plays a two-fold role. First, the concept separation helps to

define the learning goals (focus) of the examples in terms of outcomes. Second, concept

separation is used for partial ordering of the examples. Thus, an example that has a certain

concept as a prerequisite will be placed after an example that has the said concept as

outcome.

Once the example is in the system, its annotation for the current user is determined

by counting whether or not the current user has mastered the prerequisite concepts. If all of

the prerequisite concepts are mastered (or the example simply has no prerequisite concepts)

– the example is considered ‘ready to be browsed.’ If the prerequisite concepts are not

mastered – the example is marked as ‘not ready to be browsed’. The progress of the student

within the example is measured by counting the number of clicks on annotated lines of code

example code the user has done with the example.

The relevance of the examples is calculated based on the ‘threshold’ parameter. The

‘threshold’ (calculated for each of the examples individually) is the amount of clicks that

has to be done by student for the system to conclude that s/he ‘knows’ the example and

declare all of concepts corresponding to example to be mastered. The threshold amount of

clicks is calculated as:

threshold = 0.8 * [(all_concepts – mastered_concepts) / all_concepts] * all_clicks

Namely, the total number of clicks possible (for current example) is multiplied by

user has to click 80% of the ratio of currently not-mastered concepts (to mastered concepts

out of the current example) to all concepts (of the current example). This gives the number

of clicks 'left' for user to do and he has to make 80% of those to ‘master’ the example. Only

clicks on distinct code lines are counted.total clicks possible. E.g. if there are 10 clicks

possible on the lines of the code example and there are 10 concepts assigned to the

example: 5 prerequisite (all mastered) and 5 outcomes (none mastered), then the user has to

make 0.8 * (5/10) * 10 = 4 clicks to ‘master’ the example. As soon as some concepts are

declared mastered the ‘readiness’ of all other examples is recalculated and the mastery of

the concepts is propagated further.

The threshold is only used to determine the minimal amount of work the student has

to do with the individual example to learn the underlying concepts. The annotation of the

examples reflects the absolute amount of student’s work and is not related to the threshold.

Since all of the examples share the pool of concepts, it might turn out that at some point

there will be one or more examples whose concepts are mastered, yet the student has never

browsed those. As mentioned in a previous section, students can browse examples that are

annotated as ‘not ready to be browsed’. In extreme cases, the student can browse an

example, which contains only concepts that are not yet mastered. To master those concepts

while browsing such an example, the student will have to do an extensive amount of clicks,

as determined by the threshold.

The NavEx interface is implemented as a server-side solution written in Java. All

knowledge and data are stored in a relational database. NavEx is considered to be a value-

added service of the KnowledgeTree architecture [10], and uses several protocols, including

student modeling and transparent authentication. As a typical value-added service, NavEx

resides between E-Learning portals and reusable content objects, providing additional value

for teachers and students who use this content through the portal. Unlike other kinds of

value-added services, such as annotation services, the value added by NavEx is the ability

to adapt to the course goals and student knowledge. With NavEx, teachers can bypass the

time-consuming process of selecting examples for each course lecture that meet goal and

prerequisite restrictions. Students receive adaptive guidance in selecting examples that are

most relevant to their learning goals and knowledge.

4. A Classroom Study of NavEx

A classroom study of NavEx was performed in the context of an undergraduate

programming course in the Fall 2004 semester in the School of Information Sciences at the

University of Pittsburgh. NavEx was made available to all students taking this course in the

second half of the semester, after the midterm exam. There were totally 15 students

working with the system. Before the introduction of NavEx the students were able to

explore code examples with the original WebEx (i.e., without adaptive guidance) directly

through the Knowledge Tree portal. After the introduction, they were able to use both

methods of access – with adaptive navigation support through NavEx and without it

through the portal and WebEx. User activity collection procedures does not depend on the

way students access code examples. Student work with both WebEx and NavEx was

equally considered for user modeling.

4.1 Log Analysis

Our main source of data for the study was the user activity log. The log recorded every user

click (i.e., every example and code line accessed). Note that the log data gave clear

evidence as to whether a student accessed a specific example through NavEx or through

WebEx. Since students used WebEx and NavEx in parallel (the use of NavEx was not

enforced), a natural way to evaluate the influence of adaptation was to compare the usage

profiles of WebEx and NavEx. Analysis of the data showed that NavEx, though introduced

late in the course, was considered as a strong alternative to WebEx. After the introduction

of NavEx, 56% of example browsing activity was generated by NavEx users. Only 30% of

the students didn’t use NavEx at all.

Since different students used different “mixtures” of WebEx and NavEx through the

course, we decided to assess the added value of the adaptive navigation support by

comparing these two systems on a session-by-session basis. A session is counted as a

sequence of examples browsed by the student without any sizeable break. The result of this

comparison demonstrated clearly the value of adaptive navigation support in increasing the

amount of student work with examples.

First, the average session of non-NavEx users was 9.4±0.97 clicks, while NavEx

users made an average of 29.6±4.65 clicks per session. That means that navigation support

provided by NavEx encouraged students to click on 3.14 times more annotated code lines.

Second, the average number of examples browsed per session of non-NavEx users was

1.78±0.15, while NavEx users browsed 2.95±0.46 examples per session. Thus NavEx

motivates students to see an average of 1.66 examples more per session. And thirdly, the

average length of the non-NavEx user session is 225±33 seconds, while NavEx users have

average session length of 885±266 seconds. Hence NavEx keeps students focused on

examples 3.9 times longer.

Further evidence can be derived by comparing the example browsing statistics of

Fall 2004 semester, when students could use adaptive guidance and Spring 2004 when they

could not. Examples set in the Spring 2004 semester had only minor differences from the

set of examples available in the Fall 2004 so we can assume that the students had the same

external (i.e., tool-independent) motivation to use the tool. The only significant difference

was that in the Fall 2004 semester students were able to use NavEx.

The comparison of student activity data of the two semesters demonstrated that the

introduction of NavEx boosted the motivation of the students to work more with annotated

code examples. The number of code lines accessed per session increased by about 11%

from 14.22 in the Spring 2004 semester to 15.8 in the Fall 2004 semester (if we consider

only NavEx users the number of clicks per session almost doubled). The average number of

line accesses by students over a semester grew by 35% from 323.3 lines in the Spring 2004

semester to 435.9 in the Fall 2004 semester.

Thus, adaptive navigation support succeeded as a tool that encourages the students

to work more with examples. It appears that the students were simply more motivated to

work with examples when adaptive navigation support was provided. We think that such

increase of students’ motivations can be attributed to the following reasons. First,

navigation support allows students to see ‘the big picture’ – visualize their current progress

with all of their examples and estimate whether the progress they made is enough to move

further. Second, since students had all the examples grouped together, they were able to

switch from one example to another in fewer clicks and were interested in exploring more

examples.

4.2 Subjective Data Analysis

Our secondary source of evaluation data was a non-mandatory questionnaire administered

at the end of the term that solicited students’ opinions about key features of the system. Out

of 15 students in the class, 10 completed the questionnaire.

Figure 3. Subjective student evaluation of different features of NavEx

Some of the data obtained from processing the answers is shown in Figure 3. As it

can be seen, 90% of students considered annotated examples with or without adaptive

guidance helpful. 80% percent of students feel positive or strongly positive about the need

for such a tool in general. All of the respondents positive or strongly positive evaluated the

convenience to have all of the annotated code examples together. 100% of students

positively or strongly positively evaluated the interface and the interactive nature of

examples.

Two principal features of NavEx: progress indicator and the scope of availability

(‘readiness’) were evaluated positively or strongly positively by a solid fraction of the

students (80% for progress indicator and 60-70% for the scope of ‘readiness’). The slight

downfall of positive response about the scope of ‘readiness’ of examples’ annotation we

account to the fact that students started with NavEx in the middle of semester. At the time

of their first logon, all of the examples were ‘not ready to be browsed’, yet at that time

students were already familiar with almost half of them and had literally to ‘get through’

the red X’s. Nevertheless, they did appreciate the scope of ‘readiness’ on the whole.

Students also had a chance to express their suggestions about the future use and

development of the system. The idea of students being able to create their own dissections

or add their own annotations to the code lines was supported by 70% of respondents (when

such activity is an extra credit assignment), and strongly supported by 10% (when such

activity is a regular assignment). 90% students expressed strong and very strong support for

adding a social navigation feature. A substantial amount of students have also expressed

certainty that NavEx should remain as one of the class tools available for students.

5. Summary and Future Work

This paper presented the NavEx system, which provides adaptive navigation support for

students accessing interactive program examples. We implemented adaptive navigation

support to encourage the students to work more with program examples. Our classroom

study confirmed that adaptive navigation support can visibly increase student motivation to

work with non-mandatory educational content. NavEx boosted the overall amount of work

and the average length of a session. In addition, various features of NavEx were highly

regarded by the students. Among two kinds of adaptive navigation support, performance-

based annotation was appreciated more than zone-based annotation. However, it may have

been influenced by the late introduction of the system.

We plan to perform further studies with NavEx to achieve a better understanding of

the value of adaptive navigation support. In addition, we plan to extend the scope of

adaptive annotation by providing an annotation of every commented line in an example –

not only an example as a whole. To make it possible, we will apply social navigation

techniques that we are currently exploring in the course of another project.

References

[1]. Brusilovsky, P. (2001) WebEx: Learning from examples in a programming course. In: W. Fowler and J.

Hasebrook (eds.) Proceedings of WebNet'2001, World Conference of the WWW and Internet, Orlando, FL,

October 23-27, 2001, AACE, pp. 124-129.

[2]. Brusilovsky, P., Eklund, J. (1998) A study of user-model based link annotation in educational

hypermedia. In P. Carlson (ed.) Journal of Universal Computer Science 4 (4), Special Issue on Assessment

Issues for Educational Software, 429-448, also available at http://www.iicm.edu/jucs_4_4/a_study_of_user.

[3]. Weber, G., Brusilovsky, P. (2001) ELM-ART: An adaptive versatile system for Web-based instruction.

In P. Brusilovsky and C. Peylo (eds.), International Journal of Artificial Intelligence in Education 12 (4),

Special Issue on Adaptive and Intelligent Web-based Educational Systems, 351-384, also available at

http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/weber.html.

[4]. Brusilovsky, P., Yudelson, M., and Sosnovsky, S. (2004) An adaptive E-learning service for accessing

Interactive examples. In: J. Nall and R. Robson (eds.) Proceedings of World Conference on E-Learning, E-

Learn 2004, Washington, DC, USA, November 1-5, 2004, AACE, pp. 2556-2561.

[5]. Brusilovsky, P. and Pesin, L. (1998) Adaptive navigation support in educational hypermedia: An

evaluation of the ISIS-Tutor. Journal of Computing and Information Technology 6 (1), 27-38.

[6]. De Bra, P., Calvi, L. (1998) AHA! An open Adaptive Hypermedia Architecture. In P. Brusilovsky and

M. Milosavljevic (eds.), The New Review of Hypermedia and Multimedia 4, Special Issue on Adaptivity and

user modeling in hypermedia systems, 115-139.

[7]. Henze, N., Nejdl, W. (2001) Adaptation in open corpus hypermedia. In P. Brusilovsky and C. Peylo

(eds.), International Journal of Artificial Intelligence in Education 12 (4), Special Issue on Special Issue on

Adaptive and Intelligent Web-based Educational Systems, 325-350, also available at

http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/henze.html.

[8]. Papanikolaou, K. A., Grigoriadou, M., Kornilakis, H., and Magoulas, G. D. (2003) Personalising the

interaction in a Web-based Educational Hypermedia System: the case of INSPIRE. User Modeling and User

Adapted Interaction 13 (3), 213-267

[9]. Brusilovsky, P., Sosnovsky, S., Yudelson, M., Chavan, G. (2005) Interactive Authoring Support for

Adaptive Educational Systems. In: Proceedings of 12
th

 International Conference on Artificial Intelligence in

Education (AIED'2005), Amsterdam, the Netherlands, this volume.

[10]. Brusilovsky, P. (2004) KnowledgeTree: A distributed architecture for adaptive e-learning. In:

Proceedings of The Thirteenth International World Wide Web Conference, WWW 2004 (Alternate track

papers and posters), New York, NY, 17-22 May, 2004, ACM Press, pp. 104-113.

